Graphs with no K3,3 Minor Containing a Fixed Edge
نویسنده
چکیده
It is well known that every cycle of a graph must intersect every cut in an even number of edges. For planar graphs, Ford and Fulkerson proved that, for any edge e, there exists a cycle containing e that intersects every minimal cut containing e in exactly two edges. The main result of this paper generalizes this result to any nonplanar graph G provided G does not have a K 3,3 minor containing the given edge e. Ford and Fulkerson used their result to provide an efficient algorithm for solving the maximum-flow problem on planar graphs. As a corollary to the main result of this paper, it is shown that the Ford-Fulkerson algorithm naturally extends to this more general class of graphs.
منابع مشابه
On the number of graphs not containing K3,3 as a minor
We derive precise asymptotic estimates for the number of labelled graphs not containing K3,3 as a minor, and also for those which are edge maximal. Additionally, we establish limit laws for parameters in random K3,3-minor-free graphs, like the expected number of edges. To establish these results, we translate a decomposition for the corresponding graph class into equations for generating functi...
متن کاملThe Number of Graphs Not Containing K3, 3 as a Minor
We derive precise asymptotic estimates for the number of labelled graphs not containing K3,3 as a minor, and also for those which are edge maximal. Additionally, we establish limit laws for parameters in random K3,3-minor-free graphs, like the number of edges. To establish these results, we translate a decomposition for the corresponding graphs into equations for generating functions and use si...
متن کامل1 Every longest circuit of a 3-connected, K3,3-minor free graph has a chord
Carsten Thomassen conjectured that every longest circuit in a 3-connected graph has a chord. We prove the conjecture for graphs having no K3,3 minor, and consequently for planar graphs. Carsten Thomassen made the following conjecture [1, 7], where a circuit denotes a connected 2-regular graph: Conjecture 1 (Thomassen) Every longest circuit of a 3-connected graph has a chord. That conjecture has...
متن کاملExponential Speedup of Fixed-Parameter Algorithms on K3, 3-Minor-Free or K5-Minor-Free Graphs
We present a fixed parameter algorithm that constructively solves the k-dominating set problem on graphs excluding one of the K5 or K3,3 as a minor in time O(3 6 √ n). In fact, we present our algorithm for any H-minor-free graph where H is a single-crossing graph (can be drawn on the plane with at most one crossing) and obtain the algorithm for K3,3(K5)-minor-free graphs as a special case. As a...
متن کاملEvery longest circuit of a 3-connected, K3, 3-minor free graph has a chord
Carsten Thomassen conjectured that every longest circuit in a 3-connected graph has a chord. We prove the conjecture for graphs having no K3,3 minor, and consequently for planar graphs. Carsten Thomassen made the following conjecture [1, 7]: Conjecture 1 (Thomassen) Every longest circuit of a 3-connected graph has a chord. That conjecture has been proved for planar graphs with minimum degree at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014